## Problem 2.33

The hyperbolic functions  $\cosh z$  and  $\sinh z$  are defined as follows:

$$\cosh z = \frac{e^z + e^{-z}}{2}$$
 and  $\sinh z = \frac{e^z - e^{-z}}{2}$ 

for any z, real or complex. (a) Sketch the behavior of both functions over a suitable range of real values of z. (b) Show that  $\cosh z = \cos(iz)$ . What is the corresponding relation for  $\sinh z$ ? (c) What are the derivatives of  $\cosh z$  and  $\sinh z$ ? What about their integrals? (d) Show that  $\cosh^2 z - \sinh^2 z = 1$ . (e) Show that  $\int dx/\sqrt{1+x^2} = \operatorname{arcsinh} x$ . [Hint: One way to do this is to make the substitution  $x = \sinh z$ .]

[TYPO: Replace  $\operatorname{arcsinh} x$  with  $\operatorname{arcsinh} x + C$ .]

#### Solution

### Part (a)

Each point on the graph of  $\cosh z$  is obtained by taking the average of the corresponding points on the  $e^z$  and  $e^{-z}$  curves.



Each point on the graph of  $\sinh z$  is half the distance from the  $e^{-z}$  curve to the  $e^z$  curve.



# Part (b)

Begin with the definition of cosine in terms of exponential functions.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

Replace z with iz.

$$\cos iz = \frac{e^{i(iz)} + e^{-i(iz)}}{2}$$

$$= \frac{e^{-z} + e^{z}}{2}$$

$$= \frac{e^{z} + e^{-z}}{2}$$

$$= \cosh z$$

As a result,

$$\cosh z = \cos iz.$$

The definition of sine in terms of exponential functions is

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

Replace z with iz.

$$\sin iz = \frac{e^{i(iz)} - e^{-i(iz)}}{2i}$$

$$= \frac{e^{-z} - e^z}{2i}$$

$$= -\frac{1}{i} \left(\frac{e^z - e^{-z}}{2}\right)$$

$$= -\frac{1}{i} \sinh z$$

Therefore, multiplying both sides by -i,

$$\sinh z = -i\sin iz.$$

## Part (c)

Take the derivative of  $\cosh z$ .

$$\frac{d}{dz}\cosh z = \frac{d}{dz} \left( \frac{e^z + e^{-z}}{2} \right)$$

$$= \frac{1}{2} \left[ \frac{d}{dz} (e^z) + \frac{d}{dz} (e^{-z}) \right]$$

$$= \frac{1}{2} [(e^z) + (-e^{-z})]$$

$$= \frac{e^z - e^{-z}}{2}$$

$$= \sinh z$$

$$\frac{d}{dz} \cosh z = \sinh z$$

Take the derivative of  $\sinh z$ .

$$\frac{d}{dz}\sinh z = \frac{d}{dz}\left(\frac{e^z - e^{-z}}{2}\right)$$

$$= \frac{1}{2}\left[\frac{d}{dz}(e^z) - \frac{d}{dz}(e^{-z})\right]$$

$$= \frac{1}{2}[(e^z) - (-e^{-z})]$$

$$= \frac{e^z + e^{-z}}{2}$$

$$= \cosh z$$

Therefore,

$$\frac{d}{dz}\sinh z = \cosh z.$$

Take the integral of  $\cosh z$ .

$$\int \cosh z \, dz = \int \left(\frac{e^z + e^{-z}}{2}\right) dz$$

$$= \frac{1}{2} \left(\int e^z \, dz + \int e^{-z} \, dz\right)$$

$$= \frac{1}{2} [(e^z) + (-e^{-z})] + C$$

$$= \frac{e^z - e^{-z}}{2} + C$$

$$= \sinh z + C$$

As a result,

$$\int \cosh z \, dz = \sinh z + C.$$

Take the integral of  $\sinh z$ .

$$\int \sinh z \, dz = \int \left(\frac{e^z - e^{-z}}{2}\right) dz$$

$$= \frac{1}{2} \left(\int e^z \, dz - \int e^{-z} \, dz\right)$$

$$= \frac{1}{2} [(e^z) - (-e^{-z})] + C$$

$$= \frac{e^z + e^{-z}}{2} + C$$

$$= \cosh z + C$$

Therefore,

$$\int \sinh z \, dz = \cosh z + C.$$

## Part (d)

Simplify  $\cosh^2 z - \sinh^2 z$ .

$$\cosh^{2} z - \sinh^{2} z = (\cosh z + \sinh z)(\cosh z - \sinh z) 
= \left(\frac{e^{z} + e^{-z}}{2} + \frac{e^{z} - e^{-z}}{2}\right) \left(\frac{e^{z} + e^{-z}}{2} - \frac{e^{z} - e^{-z}}{2}\right) 
= \left(\frac{e^{z}}{2} + \frac{e^{-z}}{2} + \frac{e^{z}}{2} - \frac{e^{-z}}{2}\right) \left(\frac{e^{z}}{2} + \frac{e^{-z}}{2} - \frac{e^{z}}{2} + \frac{e^{-z}}{2}\right) 
= (e^{z})(e^{-z}) 
= e^{z-z} 
= 1$$

Therefore,

$$\cosh^2 z - \sinh^2 z = 1.$$

## Part (e)

Evaluate the given integral.

$$\int \frac{dx}{\sqrt{1+x^2}} = \int^x \frac{dx'}{\sqrt{1+x'^2}} + C$$

Make the given substitution.

$$x' = \sinh z$$

$$dx' = \cosh z \, dz$$

As a result,

$$\int \frac{dx}{\sqrt{1+x^2}} = \int^{\sinh^{-1}x} \frac{\cosh z \, dz}{\sqrt{1+\sinh^2 z}} + C$$

$$= \int^{\sinh^{-1}x} \frac{\cosh z \, dz}{\sqrt{\cosh^2 z}} + C$$

$$= \int^{\sinh^{-1}x} \frac{\cosh z \, dz}{\cosh z} + C$$

$$= \int^{\sinh^{-1}x} dz + C$$

$$= \sinh^{-1}x + C.$$

Therefore,

$$\int \frac{dx}{\sqrt{1+x^2}} = \operatorname{arcsinh} x + C.$$